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I .  Phys.: Condens. Matter 3 (1991) 868H694. Printed in the UK 

Nuclear magnetic dephasing in solids 

R N Shakhmuratov 
Kazan Physical-Technical Institute ofthe Kazan Scientific Centre of the Academy of 
Sciences of the USSR, Sibirsky trakt 1017, Kazan 420029, USSR 

Received 22 April 1991 

Abstract. Nuclear relaxation arising from spin-spin interactions in the crystal unit cell is 
described by the model approach. The analytical expression for the free-precession signal 
(ms) isobtained for an arbitraryvelocityolthe reciprocal spin flips. Anexcellent agreement 
withexperimentally observed FPSin CaF, isobtained. The fundamental possibility toobserve 
the critical slowing down of the phase relaxation in resonant magnetic fields is revealed. 

Theproblem ofthe phase relaxationofspin systemsinsolidsisstill not resolved, although 
there have been continuous discussions over the last forty years. In  many cases the NMR 
and EPR line shapes, arising from the processes of spin phase relaxation, are described 
by means of the method of moments, either by some modification of the perturbation 
theory or by various numerical methods. The matter seems to be rather difficult because 
it is necessary to solve an essentially many-body problem, which remains a fundamental 
question in solid state physics. The problem arises from the dipole-dipole interactions 
between the spins, ordered in the crystal. This interaction excites the reciprocal spin 
flips (a flipflop (f-f) process) disturbing the phase of an individual particle without 
energy loss in the entire spin system. Nevertheless, different approaches exist that 
provide an exact solution of the problem, but within an ideal model. In this model the 
problem is converted to the statistical analysis of random fields, seen by the selected spin 
in the crystal. One of these approaches has been developed in [ 11. where the local field 
H d ( t )  seen by a selected spin is considerd as the sum of two statistically independent 
fields 

H,( t )  = H!#( t )  + H%(t)  

having an essentially different nature. This is stipulated by the existence of two spheres 
(one near and one remote) for the selected spin in the crystal, where the orientations 
of the spins and hence the fields created by them are correlated and uncorrelated, 
respectively, with the selected spin orientation. In [I] the equations that describe the 
decay of the total transverse component of the spins, produced by the random fields 
resulting from the f-f processes, have been obtained. The Laplace transform of the 
solution of the equations has been found, but a comprehensive analysis of the solution 
has not been performed. The objective of the present paper is to deduce and to analyse 
the solution of the equations, analogous to those in [l], and to investigate the influence 
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of the resonantfield on the kinetics of the transverse component of the nuclear mag- 
netization of atoms with spins of 4 in a simple cubic lattice. 

Let us consider the spin system described by the following Hamiltonian: 

$t= %> +%$ + %',(r) 

$tZ = yhH0 s, %', ( I )  = y f i H ,  &, cos W I  
i I 

where 3?z and %',( I )  are the Hamiltonians of the interaction with constant field Ho and 
alternating magnetic field HI cos W I ,  respectively, %'2 is the secular part of the dipole- 
dipole interactions (see [2]),  rii is the distance between spins i and j ,  0,  is the angle 
contained by the direction of the constant magnetic field Ho and the internuclear vector, 
connecting the spins i and j and y is the gyromagnetic ratio. 

We confine ourselves to consideration of the first (the nearest) sphere, that is to the 
analysis of the influence of the field H$)(r). The spins, for which the probability of the 
f-f process is large, are correlated with the selected spin. They are contained in the 
sphere of radius r .  According to [I] we also call this sphere a 'cell'. Two parameters, 
characterizing the cell, may be introduced: the correlation time T, and the mean spread 
in the random fields H,. For a simple cubic lattice of spins 1 the distribution function of 
the random fields F(A) is supposed to be close to the uniform one (the rectangular 
distribution function) [I]: 

h(C/rd2 = ( u H d 2  A = Y H ~  

where HZ = ( ( H $ ) ) z )  is the dispersion of the random fields, and the parameter C 
characterizes the velocity of the random process of the field fluctuations. This is con- 
firmed by the proximity between the ratio of the fourth-line moment Ma to the square 
of the second moment M 2  ( M , / M I )  and the same ratio for the rectangular distribution 
function [2]. According to [l,  3, 41 let us divide the dipole-dipole interaction into two 
parts: is the interaction of the Z-components of spins and kft is the interaction 
responsible for the f-fprocess. Then the correlation time 5, will correspond to the mean 
time value of about W i l ,  during which the reciprocal flips in the spin pairs occur owing 
to the %ff part, The field H$(I )  seen by the selected spin is created by the z-components 
of all spins in the cell arising from the %'zz part. Since it is supposed that this field is not 
correlated with the field H$(f) ,  created by the other spins in the crystal, the influences 
of these fields on the selected spin may be considered separately. 

The field H$'(t)  induces random changes of the resonant frequency of the selected 
spin in the cell. This process may be described in terms of spectral diffusion, in which all 
spins are divided into spectral packets. and a frequency change of the separate spin is 
considered as its transition from one spectral packet to another. Let us utilize the ap- 
proximation of the resonant frequency change of a spin by an abrupt Markovian process 
(the strong-redistribution model). Under this approach the magnetization components 
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Mx(A), My(A), Mz(A) of spectral packets with frequency deviation of A = yH$ from 
theresonant frequency wg = yHosatisfy the followingequationsofmotionin therotating 
frame [5 ,6] :  

I 1 -- dMx(A) - AM,,(A)--Mx(A)+ W(A’,A)Mx(A’)dA‘ 
dt % 

I 1 -- dMz(A)- wlMy(A)--MM,(A)+ W(A‘,A)Ma(A’)dA’ 
dt 5 ,  

where wl = yHl; (A) = 0; w = wo. Here the terms with the factor l/rc (the ‘out’ terms) 
describe the spin loss in the packet A occurring from the f-f processes, which induce the 
change of the local field HS). The integral terms on the right-hand side of equations (the 
‘in’ terms) describe the particles coming into the packet considered out of all the others. 
This process is determined by the conditional probability W(A‘, A). Let us assume that 
this probability does not depend on the initial state A‘, that is W(A’, A) = r;’F(A). 
This uncorrelated stationary process permits us to use a simple scheme in solving the 
equations (1). By Laplace transformation (in terms of non-dimensional variables) of 

dr 
exp[-(p - w / ~ , I w ~ )  - 

0 5,  
w p )  = 

equation (1) is converted to the set of algebraic equations, the solution of which has the 
form 

M(p. A) = @ ( A 3 p 3  01; N O ,  A); W(P)))  

where M ( 0 ,  A) = F(A)m(O) is the magnetization vector of the packet at the initial 
moment; 

(WP)) = WP,  A) dA 

is the summary magnetization vector of all the packets, the components of this vector 
are connected with initial values of m,(O), m,(O), m,(O) as follows: 

The behaviour of the transverse component of the summary magnetization may be 
obtained by applying the inverse Laplace transformation 

c+i= 

(3) 
1 

2ni (Mx.y(t)) = --xp(-t/r,) ( ~ ~ . ~ ( p ) )  exp(pt/r,) dp. 
a-i- 

We shall first be concerned with the free induction decay. The x/2 pulse rotates the 
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spins of all the packets through 90”. Then, because of the spread of the eigenfrequencies 
and mixing of packets, the dephasing process (i.e. the spread of the spin packets in the 
x-y plane) occurs. This process may be described if we put w ,  = 0 ( E  = 0); M,(O, A )  = 
F(A)mo; M,(O, A )  = M,(O, A )  = 0 in (2). Then the solution of the problem is reduced 
to finding the object function of the Laplace transform 

W h ) )  = mo tan-’(C/p)/IC - tan-’(C/~)l. (4) 

Thelatterhasapolep =p l  = CcotCat  Csn/2andtwologarithmicbranchpointsp = 
i iCfor arbitrary values of the parameter C. The inverse Laplace transformation of (4) 

according to the formula (3) gives the following expression for the free-induction decay 
signal: 

[Cz - ( ~ / 2 ) ~  - N 2 ]  + i2CN 
[C’ - (n/2)’ - N2I2 + 4C2N2 C ( 8 )  = nC7, 

1 C - R T ,  
2 C + R 7 ,  

N = -In B, = C / r ,  = fi y H ,  

X > O  

x < o  

where the first exponential term appears owing to the pole contribution and the second 
(integral term) is a result of going around the logarithmic branch points. It should be 
pointed out that the Q-function has this form at all values of the parameter C ,  with the 
exception of C = n/2, since at this value, the pole pI  = 0 falls on the branch cut in 
the complex plane (-iC; +io. Therefore Q(t) must be calculated in another way at 
C =n/2. The expression ( 5 )  for C Q 1 is essentially simplified: 

This case corresponds to a fast process leading to motional narrowing and consequently 
to the exponential relaxation with time T2. Expression (5)  at C + 1 (the slow process) 
has another asymptote, that is 

(M, (0) = mo[sin(ct/r,)/(ct/7~)1 exp( - f/T,).  (7) 

This is an inverse Fourier transform of the static rectangular distribution function 
multiplied by the time exponent, Transition from the exponential relaxation (6) to the 
non-exponential comes about as follows. The solution ( 5 )  consists of two parts-pure 
exponential and non-exponential. The first one exists at 0 < C S n/2, that is when the 
Laplace transform ( 4 )  has a pole. The second exists at all values of C and it is stipulated 
by logarithmic branch points. Let us name C = C,, = n/Z by a critical point, since when 
passed the relaxation becomesnon-exponential. The case C > C,, isof the most interest, 
as the velocity of the f-f process in a pair ( r ; ] )  is much smaller than the precession 
frequency of a spin in a local field of the cell If$>, that is C =  fi yH,r,>n/2 or 
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yH, > 0.9 W,. In this domain of C-values free-induction decay is described by the 
expression 

Of&)) = m Q ( 0  exp(-r/t,). 

Thefunction Q(t) may be interpreted asaFourier integralofthespectralfunction, which 
coincides with G(Q) in the interval ( - Q K ,  Q K )  andequals zero when I Q /  Q K ,  Such a 
form of the solution enables us to reconstruct the line shape function f (w) ,  since the 
Fourier transform of the free-precession signal is known [2] to be proportional tof(w). 
Taking into account the Bore1 convolution theorem we obtain 

1 - i(w - Q)r ,  
1 + (w - Q ) 2 r :  g(w - 9) = z, 

whereg(o - Q )  is the Fourier transform of the functionexp( - f /rc) .  Thisexpression is 
correct in the region beyond the critical value of C (C > CJ. When Cis smaller than C,, 
it is transformed as follows: 

T2 = r , ( l -  Ccot C,,I. 

The real part of the function G(Q) has a specific dependence on the process velocity 
(-C-'). When C-t ce (the slow process) it coincides with the rectangular distribution 
function. When C decreases to its critical value (the velocity of the process increases) 
this function transforms to the bell-shaped function. In figure 1 the dependence of 
Re G(Q) on the frequency Q and the parameter Cis presented. In the region beyond 
the critical value of C (C > C,) the function Re G(Q) admits the approximation of 

[!- ($)*]"' xr,C 
cz - (n/2)2 

Re G(Q) = (9) 

where the index U is connected with Cas follows: 

c=-  n ( 1-- ;;yy: ; ;I) -1'2 

2 

When C+ m the index u1  tends to zero, while for C-t C,, it tends to infinity. For 
example, the index u1 takes the values 1 and 1/2 when C is equal to 2.72 and 3.39, 
respectively. 

The imaginary part of the function G(Q) at large values of C is a gently sloping 
curve (proportional to -Q), assuming zero values at the boundaries ( - Q K ,  Q K ) .  The 
parameter C approaching C,, this curve transforms into that similar to an ordinary 
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In C I ”  c 

Figure I. The real part of the spectral function 
G(Q)  is plotted against frequency R and par- 
amcter C. parameter C. 

Figure 2. The imaginary part of the spectral func- 
tion G(R) is plotted against frequency R and 

dispersioncurve,y’(B). Infigure2Im G(S2)isshownplottedagainst BandCat C >  Cc,. 
In this region of C-values the function Im G(Q) permits the following approximation: 

Approximations (9) and (10) allow one to obtain a simple analytical expression for 
the induction signal at C > Cc,: 

whereJ,(r) is the Bessel function. 
At large values of the parameter C the order of the first Bessel function (vI + 1) 

tends to a half and this part of the solution transforms to the asymptote (7). The second 
component of the solution with the Bessel function of the order of v 2  t t gives a small 
corrcction of the order of 1/C. Such FPS behaviour is typical of the CaFl single crystal 
that was considered in [2]. At C = 3.339 the order of the first Bessel function is equal to 
unity and this part of the solution gives the time dependence of FPS, coinciding with that 
suggested in [7] for solidified nH2 at 4.2K. The second part, proportional to 
J,,+,,,(B,l), is equal to zero at f = 0. The other zeros of JU2+3,2(PK1) nearly replicate 
those of the first Bessel function, and at C = 2.37 the zeros coincide strictly, since 
U ,  + d =u2  + g. At C > 2.37 the zeros of the second Bessel function lag behind and at 
C < 2.37 they are slightly ahead of the zeros of the first Bessel function. Furthermore, 
it may be shown that in the expansion of the function (M,(t)) into a power series of f, the 
term of the first power is absent. This is because of the fact that the expansion of the 
second part of the solution without the exponential factor begins from the term l /Tc ,  and 
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of the first part starts from unity, so as a result we have: mo(l + f/ t ,  + . . .). The 
exponentialmultiplierhasinitsturnapowerseriesexpansionoftheform 1 - f/ t ,  + , . , , 
and finally the function proportional to J v 2 + 3 ~ 2 ( S 2 K I )  influences the solution (M,(t)) so 
that it leads to slowing down of the FPS decay. It is especially noticeable at the initial 
stage of evolution, when due to the second term the derivative of (M,(f)) /mo at f = 0 
equals zero but not -l/rc. 

In order to illustrate the method suggested let us describe the FPS in CaF, using 
solution (5). The detailed experimental dataon free-induction decay in thissingle crystal 
have been given in [S] with the indication of eight zeros of the ( M , ( f ) )  function for the 
magnetic field parallel to the crystalline direction [loo]. In order to compare the theory 
with experiment it is necessary to know two parameters, that is C and t,. In order to 
determine them the functionf(t) = (M,(f))/mo will be expanded in a power series off in 
the vicinity o f t  = 0: 

M z  f ( r )= 1 - - - t Z + .  . . = 1 
2! 

where according to [2] M2 is the second moment of the line. From this it is easy to obtain 
the connection of the parameter C with a well known quantity M 2 :  

c= [(3 -t 2U1)(M:tS - 1)]”2. (12) 

The second parameter t,defines the probability of the f-f process stipulated by the ‘f l ip  
flop’ part of the dipole-dipole interactions: 

(&ff)z, = - yZh2[(1 - 3 cos2 0,,)/4ri](S:S; + S;S;). 
Therefore it may be presented as 

where i is the index of a selected spin, and the summation over j means the sum over the 
sixnearest-neighbour spins. The influence of the local field If$)(& created by the distant 
spins (i.e. by spins out of the cell) on a selected spin, because of the statistical inde- 
pendence of H$,)(t), leads to the factor exp(?azt2) appearing in the function (M,( t ) )  (see 
111). The factor decreases monotonically with time and consequently does not influence 
the ms zero positions. However this should be taken into account when calculating the 
C parameter, since the value of a contributes to M2. 

The best coincidence with the experimentally observed zeros of the  functionf(r) was 
o b t a i n e d w h e n a  = 3.614G;a = 0 . 6 G ; t C =  92ps.Accordingtotheexpression(l2) 
the matching parameters are C = 14.29 and v 1  = 0.02. The correlation time of 92 ps 
gives the squareof thef-f processprobability WX = ( l / t $  to be 1.75 timessmaller than 
the sum (13). In figure 3 , f ( t ) ,  obtained‘by numerical integration of the expression (5) 
with given parameters C and tc, is plotted. Comparison of the zeros calculated with the 
ones observed in the [loo] field direction [8] is adduced in table 1, second column. For 
two other directions, [I101 and [ill]? calculations have not been performed, since we 
believe that when the magnetic field Ho changes its direction the values of M2 and the 
correlation time t, change also, the magnitude of C remaining almost constant. This is 
confirmed by the fact that the ratio of times at which the nth zero is observed (t,J for 
different orientations of Ha, is nearly not changed with n. In other words the relation 
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I 1  

t ( P I  
-0 .25 

I 
Figure 3. The time dependence of free precession signal, stipulated by the spin fluctuations 
inacell. forasinglecr~stalofCaFtwithHoll[lOOlwhen r , = ¶ 2 u i B C =  14.29.Thearrows 
indicate the F P S Z ~ ~ O S  (on a microsecondscale). 

Tablei.Thezerosofthefreeprecessionsigna1sonthemicrosecondscale. Inthe firstcolumn 
the zeros observed experimentally [SI are presented. The second column demonslrates the 
best agreement with the experimental data, obtained within the theory with a correlation 
time32% longer than thdtcalculaledaccordingtotheexpression(l3). The iheorelicalresulir 
utilizing expression (13) arc shown in the third column. The results of the theory with a 
correlation time calculated in the appendix are presented in the fourth column. 

~~~~~ 

FPS zems (ps) 

Experiment Theory, C = 14.29 Theory, C = 10.95 Theory. C = 8.56 
Number 181 r , = 9 2 p s  1. = 69.5 ps r. = 54.95 14s 

I 21.38 2 0.01 21.43 
2 42.15 2 0.02 42.0 
3 62.26 2 0.03 62.42 
4 82.75 2 0.06 82.19 
5 103.4 20.15 103.14 
6 122.96 -0.6 lU.46 
I 1445 2 1.5 143.77 
8 165 24 .0  164.07 

...,,, .,.~.. , , , .,, 
21.53 22.1 
41.9 42.6 
62.1 62.92 
82.23 

102.3 
83.15 

103.3 
122.4 123.45 
142.44 143.56 
162.48 163.65 

r:, = @,(C)r;  is fulfilled with an accuracy of afew per cent, where i is one of the three 
directions; therefore 

where j = [loo]. 



Nuclear magnetic dephasing in solids 8691 

Thus, free-induction decay in CaF, is described by a Bessel function of the order of 
0.502, by two hundredths differing from the order of the Bessel function suggested by 
Abragam: 

( f i / ~ ) ~ l , z  (bt)/(bt/Z)@ = (sin bt)/bt. 

Comparison of the experimental results [SI with our theoretical predictions, which 
employ the correlation time z, calculated by the method described in [ 9 ] ,  is presented 
in the appendix. 

We consider the iduence of the resonant field H l ( t )  on the relaxation of the trans- 
verse magnetization components: (M,(t)) and (My(t)). The variation of the kinetics of 
the (M,(t)) component can be detected by a 'spin-locking' technique, when the 90" 
phaseshift of the RF field follows the 90" pulse immediately, the magnetization in the 
rotating frame being parallel to the effective field H , .  The kinetics of the (My(t)) com- 
ponent can be observed without the following phaseshift of the continuously operating 
RF field of an intensity other than the pulse field. 

In the case of a slow process ( C 9  1) the motion of the magnetization (M( t ) )  is 
described by the Bloch equations: 

d(M,)/dt = - (M,)/Th (140) 

d(M,)/dt - wi(M,) - (My)/Tzy (14b) 
d(Mz)/dr= wi(M,) - ((M,) - M,o)/Ti. (144 

(MI@)) = m,(O) exp(-f/Td. 

Its solution at (M(0) )  = (mx(0), 0.0) has the form 

The time Th may be found by the inverse Laplace transformation (3) of the expression 
(2). In the strong RF field (wIzC % 1) the main contribution to the behaviour of the x-  
component is given by the pole at the extreme right: 

p r  = 1 - CZ/3(&2 + 1) + . . . . 

Tu, = S J l  + ( ~ l . c ) 2 1 / ( Y ~ c ~ c ) 2 .  

From this it follows that 

This is a typical slowing down of the relaxation for 'viscous' liquids [2, 10-121 

At (M(0) )  = (0, m,(O), 0) the solution of equation (14). when wlTzy 9 1; M,, = 0; 
(YHCSC 4 1). 

TI + m ,  has the following form: 

In thestrong field (wIzc % 1) the maincontributionin the behaviourof they-component 
is determined in accordance with (2) by the two poles at the extreme right: 

p r  = 1 2  ie 2 i(CZ/6e) - (C2/6~2)(1 + &C2) + . . . . 
From this it follows that T2, = Th. Furthermore, it may be shown that the Rabi fre- 
auencv increases as a result of the modification of the kinetics as follows: 0, = 
&I1 4 1(Hc/H1)21. 

When the velocity of the process is smaller than the critical value: C-' < C;', the 
relaxation becomes non-exponential and cannot be described by the Bloch equations 
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(14). This arises from the fact that the Laplace transform (2) hasno poles. Switchingon 
even a weak RF field (wizc Q 1) leads to a pole revival: p c  = C,,c/(c - er)’’ + . . . , 
owing to this in the (M,(t)) component kinetics the long exponential ‘tails’ appear, 
characterized by the time 

TEXP = I1 + (Cer/C)YHi~clrc (15) 

at C D C,. The latter is essentially longer than the time scale of non-exponential relax- 
ation ( - ( y H J ’ ) .  The contribution of the exponential component to solution (3) 
increases with the field amplitude. In a strong field (wlrc  P C2) the relaxation becomes 
essentially exponential and may be described by the Bloch equations (14) with times: 

Tz, = s,(H,/H,)’ T2y = $r,(Hi/yHfrc)’. 

It may be shown that in the case of a slow process (C P 1) a significant slowing down of 
the x-component relaxation (the value of Tr, increases from a value of the order of 
(yH,)-’toseveralunitsoft,)alreadyoccurswhenH, - H,. In thisprocesstherelaxation 
rateof thcy-component changesslightly. Thisdifferencein the times TL,and T2yremain~ 
up to very large field amplitudes, H, - CH,. 

Our investigations show that in the liquid phase (C < C,) relaxation of the mag- 
netization in the x-y plane is symmetric (T,  = T2J. Its slowing down depends on the 
relationoftheRabifrequencywiandthecorrelation timer,. Inthesolidphase(C> C,) 
under a strong field (Hi > H J  the asymmetry in relaxation times appears (Tz, %- T2J.  
The slowing down of the x-component relaxation becomes significant when the RF field 
amplitude H ,  is comparable with the local field H,. This result confirms the Redfield 
hypothesis [13] about the existence of the spin temperature in the rotating frame, 
according to which the spins at HI > H ,  are quantized in the effective field H,  and 
relaxation of the x-component of magnetization slows down since it becomes an energy 
relaxation, while the y-component relaxation remains a phase relaxation, Asymmetry 
of relaxation times is assumed within the framework of this hypothesis, but follows 
directly from our theory. 

In conclusion it should be noted that it is difficult to detect the moment of the process 
velocity crossing its critical value Cg‘ (when t, decreases as a result of a sample heating) 
owing to the smooth character of the crossing. However, this point may be determined 
by thespin-lockingtechnique ina weakcontinuouslyoperating RFfield (wlrc  4 1). when 
TexP (15) against the amplitude HI  is analysed. At C + C,, this dependence is linear in 
Hi. In the vicinity of the critical point: 

2(C - C,)/C,, Q ( W I T C ) Z  < 1 

and just at the point this dependence becomes non-linear: 

reXp = r,[1 + ( ~ , w , r , / ~ ) ~ ’ 3 ] .  

The degree (index) of non-linearity depends on the form of the local field distribution. 
In athree-dimensional spinsystem, with typical distributionfunctionswith gentlysloping 
peaks and abrupt wings, for example, rectangular or Gaussian forms, the index of the 
power with which the field amplitude enters the expression for TexP is two thirds. 
Distribution functions of one-dimensional spin systems have. on the contrary, gently 
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sloping wings and sharp peaks. For example, the Laplace distribution function possesses 
these properties 

F A )  = (r,/2C) exp(-IAa,I/C) dA. 

The deviation from the linear dependence of Texp against HI in the vicinity of C,, is 
smaller for this function because of the appearance of the extra logarithmic dependence: 

where & = WITc; Iln €1 9 1 

Appendix 

In [9]  the probability of reciprocal spin Rips in a pair i j  is estimated as follows: 

w,/ = (2x/n*)l(+1, w*ff),/la *WT*/n 
where T2 = nF 0) In this expression in contrast to that adduced in [9]  there is no 

when the f-f transition in a pair of identical nuclei takes place the number of finite states 
per unit frequency interval is equal to T I / k  It is known that for S = 1/2: 

multiplier 11 J 2, since .. the  uniform distribution function is taken as F(0). Therefore 

M ,  = i % f i z Y 4  E' r;; ( I  - 3  COS^ e,/)* 
I 

Therefore the expression for the correlation time t, may be expressed as 

T;' = 2' W, = .$M2fI = n M I r , / 9 C  
i 

which gives an additional correlation between the following theoretical parameters T ~ ,  
M ,  and C 

M , t t  = 9C/n. 

Using this expression and the condition (12) one can obtain C and 5, from M I .  Thus for 
the value of a = 3.614 G the corresponding parameters of the theory are equal to 
C = 8.56; u l  = 0.0575 and zS = 54.95 ps. The zeros of the FPS at these values of the 
theoretical parameters are shown in the fourth column of table 1. The zeros of the FPS 
for re,  calculated from the expression (13) and with a = 3.614 G, are listed in the 
third column, the corresponding parameters being equal to T ,  = 69.5 ps, C = 10.951 
and U ,  = 0.0375. 
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